资源类型

期刊论文 125

会议视频 6

年份

2023 10

2022 13

2021 13

2020 5

2019 9

2018 5

2017 8

2016 6

2015 6

2014 3

2013 5

2012 6

2011 2

2010 6

2009 7

2008 3

2007 8

2006 3

2005 2

2004 1

展开 ︾

关键词

几何控制 3

边缘计算 3

扫描格式转换 2

智能制造 2

移动边缘计算 2

1) 1

5G 1

DX桩 1

GM(1 1

IEEE 2030.5 1

Mallat算法 1

Meyer小波变换 1

PCB缺陷检测 1

TBM 刀盘设计 1

TBM 效率 1

“互联网+”智能交通 1

三维细观模拟 1

上部结构 1

云制造 1

展开 ︾

检索范围:

排序: 展示方式:

Edge preparation methods for cutting tools: a review

《机械工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11465-023-0766-y

摘要: Edge preparation can remove cutting edge defects, such as burrs, chippings, and grinding marks, generated in the grinding process and improve the cutting performance and service life of tools. Various edge preparation methods have been proposed for different tool matrix materials, geometries, and application requirements. This study presents a scientific and systematic review of the development of tool edge preparation technology and provides ideas for its future development. First, typical edge characterization methods, which associate the microgeometric characteristics of the cutting edge with cutting performance, are briefly introduced. Then, edge preparation methods for cutting tools, in which materials at the cutting edge area are removed to decrease defects and obtain a suitable microgeometry of the cutting edge for machining, are discussed. New edge preparation methods are explored on the basis of existing processing technologies, and the principles, advantages, and limitations of these methods are systematically summarized and analyzed. Edge preparation methods are classified into two categories: mechanical processing methods and nontraditional processing methods. These methods are compared from the aspects of edge consistency, surface quality, efficiency, processing difficulty, machining cost, and general availability. In this manner, a more intuitive understanding of the characteristics can be gained. Finally, the future development direction of tool edge preparation technology is prospected.

关键词: edge preparation method     preparation principle     cutting edge geometry     edge characterization     tool performance    

Modeling of the minimum cutting thickness in micro cutting with consideration of the friction aroundthe cutting zone

Tianfeng ZHOU, Ying WANG, Benshuai RUAN, Zhiqiang LIANG, Xibin WANG

《机械工程前沿(英文)》 2020年 第15卷 第1期   页码 81-88 doi: 10.1007/s11465-019-0561-y

摘要: Friction modeling between the tool and the workpiece plays an important role in predicting the minimum cutting thickness during TC4 micro machining and finite element method (FEM) cutting simulation. In this study, a new three-region friction modeling is proposed to illustrate the material flow mechanism around the friction zone in micro cutting; estimate the stress distributions on the rake, edge, and clearance faces of the tool; and predict the stagnation point location and the minimum cutting thickness. The friction modeling is established by determining the distribution of normal and shear stress. Then, it is applied to calculate the stagnation point location on the edge face and predict the minimum cutting thickness. The stagnation point and the minimum cutting thickness are also observed and illustrated in the FEM simulation. Micro cutting experiments are conducted to validate the accuracy of the friction and the minimum cutting thickness modeling. Comparison results show that the proposed friction model illustrates the relationship between the normal and sheer stress on the tool surface, thereby validating the modeling method of the minimum cutting thickness in micro cutting.

关键词: tool friction     minimum cutting thickness     finite element method     tool edge radius     micro cutting    

Russian school of the theory and geometry of gearing: Its origin and golden period (1935 --1975)

Dmitry BABICHEV,Sergey LAGUTIN,Natalya BARMINA

《机械工程前沿(英文)》 2016年 第11卷 第1期   页码 44-59 doi: 10.1007/s11465-015-0360-z

摘要:

During the second half of the twentieth century, Soviet scientists were among the world leaders in the theory and geometry of gearing or the theoretical fundamentals of designing gears and gear-cutting tools. The authors of the current paper review works related to the development of the theory of gearing (TG) written in Russian from the mid-1930s to the present. Overall, the review covers more than 400 publications of nearly 200 authors (among more than 1000 studied works). This review involves some works on gear strength and accuracy to attract more experts.

This paper presents a short list of works from the seventeenth century to the nineteenth century and discusses the basic concepts of the TG. This paper also includes a review of more than 160 papers in Russian for the period of 1935–1975, which is the “golden age” of the TG. The main features and achievements during this period are also considered.

The distinctive feature of this review is the use of diagrams that visually present TG experts and the dates and themes of their published works. The diagrams also show the following aspects: 1) The most popular and important themes in a specific period, 2) the most important publications on the themes of interest to readers, and 3) the direction of the works and scope of interests of every researcher.

关键词: theory of gearing (TG)     gear geometry     generating surface     gear synthesis     gear analysis    

A new proof of Honeycomb Conjecture by fractal geometry methods

Tong ZHANG, Kai DING

《机械工程前沿(英文)》 2013年 第8卷 第4期   页码 367-370 doi: 10.1007/s11465-013-0273-7

摘要:

Based on fractal geometry, we put forward a concise and straightforward method to prove Honeycomb Conjecture—a classical mathematic problem. Hexagon wins the most efficient covering unit in the two- dimensional space, compared with the other two covering units—triangle and square. From this point of view, honeycomb is treated as a hierarchical fractal structure that fully fills the plane. Therefore, the total side length and area are easily calculated and from the results, the covering efficiency of each possible unit is provided quantitatively.

关键词: Honeycomb Conjecture     fractal geometry     hierarchical fractal structure    

Crystallographic orientation effect on cutting-based single atomic layer removal

Wenkun XIE, Fengzhou FANG

《机械工程前沿(英文)》 2020年 第15卷 第4期   页码 631-644 doi: 10.1007/s11465-020-0599-x

摘要: The ever-increasing requirements for the scalable manufacturing of atomic-scale devices emphasize the significance of developing atomic-scale manufacturing technology. The mechanism of a single atomic layer removal in cutting is the key basic theoretical foundation for atomic-scale mechanical cutting. Material anisotropy is among the key decisive factors that could not be neglected in cutting at such a scale. In the present study, the crystallographic orientation effect on the cutting-based single atomic layer removal of monocrystalline copper is investigated by molecular dynamics simulation. When undeformed chip thickness is in the atomic scale, two kinds of single atomic layer removal mechanisms exist in cutting-based single atomic layer removal, namely, dislocation motion and extrusion, due to the differing atomic structures on different crystallographic planes. On close-packed crystallographic plane, the material removal is dominated by the shear stress-driven dislocation motion, whereas on non-close packed crystallographic planes, extrusion-dominated material removal dominates. To obtain an atomic, defect-free processed surface, the cutting needs to be conducted on the close-packed crystallographic planes of monocrystalline copper.

关键词: ACSM     single atomic layer removal mechanism     crystallographic orientation effect     mechanical cutting     Manufacturing III    

Structural design of morphing trailing edge actuated by SMA

Qi WANG, Zhiwei XU, Qian ZHU

《机械工程前沿(英文)》 2013年 第8卷 第3期   页码 268-275 doi: 10.1007/s11465-013-0261-y

摘要:

In this paper, the morphing trailing edge is designed to achieve the up and down deflection under the aerodynamic load. After a detailed and accurate computational analysis to determine the SMA specifications and layout programs, a solid model is created in CATIA and the structures of the morphing wing trailing edge are produced by CNC machining. A set of DSP measurement and control system is designed to accomplish the controlling experiment of the morphing wing trailing edge. At last, via the force analysis, the trailing edge is fabricated with four sections of aluminum alloy, and the arrangement scheme of SMA wires is determined. Experiment of precise control integral has been performed to survey the control effect. The experiment consists of deflection angle tests of the third joint and the integral structure. Primarily, the ultimate deflection angle is tested in these two experiments. Therefore, the controlling experiment of different angles could be performed within this range. The results show that the deflection error is less than 4% and response time is less than 6.7 s, the precise controlling of the morphing trailing edge is preliminary realized.

关键词: morphing wing trailing edge     shape memory alloy     digital signal processor     PID algorithm    

Transmission probability method based on triangle meshes for solving the unstructured geometry neutron

WU Hongchun, LIU Pingping, ZHOU Yongqiang, CAO Liangzhi

《能源前沿(英文)》 2007年 第1卷 第2期   页码 158-166 doi: 10.1007/s11708-007-0020-z

摘要: The fuel assembly or core with unstructured geometry is frequently used in the advanced reactor. To calculate the fuel assembly, the transmission probability method (TPM) is widely used. However, the rectangular or hexagonal meshes are mainly used in the TPM codes for the normal core structure. The triangle meshes are most useful for expressing the complicated unstructured geometry. Even though the finite element method and Monte-Carlo method are well suited for solving the unstructured geometry problem, they are very time-consuming. Therefore, a TPM code based on the triangle meshes is developed here. This code was applied to the hybrid fuel geometry, and compared with the results of the MCNP code and other codes. The results of the comparison were consistent with each other. The TPM with triangle meshes can thus be applied to the two-dimensional arbitrary fuel assembly.

关键词: unstructured geometry     assembly     transmission probability     TPM     rectangular    

Frequencies of circular plate with concentric ring and elastic edge support

null

《机械工程前沿(英文)》 2014年 第9卷 第2期   页码 168-176 doi: 10.1007/s11465-014-0299-5

摘要:

Exact solutions for the flexural vibrations of circular plates having elastic edge conditions along with rigid concentric ring support have been presented in this paper. Values of frequency parameter for the considered circular plate are computed for different sets of values of elastic rotational and translation restraints and the radius of internal rigid ring support. The results for the first three modes of plate vibrations are computed and are presented in tabular form. The effects of rotational and linear restraints and the radius of the rigid ring support on the vibration behavior of circular plates are studied over a wide range of non-dimensional parametric values. The values of the exact frequency parameter presented in this paper for varying values of restraint parameters and the radius of the rigid ring support can better serve in design and as benchmark solutions to validate the numerical methods obtained by using other methods of solution.

关键词: circular plate     frequency     elastic edge     rigid ring     mode switching    

Knife-edge technique for laser cooling

WANG Zhanshan, MA Shanshan, MA Yan, ZHAO Min, LIU Hengbiao

《机械工程前沿(英文)》 2007年 第2卷 第4期   页码 468-473 doi: 10.1007/s11465-007-0081-z

摘要: The transfer characteristics of an atomic beam and the effect of laser were investigated in this paper. In the application of knife-edge technique, the temperature of atoms through laser cooling was measured. Results indicate that, after atoms are emitted from an atomic oven, the longer the atoms move, the worse the distribution of the atomic beam shows, regardless the laser cooling is taken or not. Laser cooling can reduce the transverse velocity of the atomic beam to several orders of magnitude and also increase the uniformity of an atomic beam. Knife-edge technique can measure the temperature of an atomic beam through laser cooling. The measurement accuracy depends on the pixel size of the charge coupled device (CCD), which is used for the fluorescent imaging of the atomic beam. The results are very important for the future experiments of laser cooling.

关键词: knife-edge technique     uniformity     coupled     transfer     fluorescent    

提升前沿新材料产业基础能力战略研究

刘雪峰,刘昌胜,谢建新

《中国工程科学》 2022年 第24卷 第2期   页码 29-37 doi: 10.15302/J-SSCAE-2022.02.006

摘要:

本文重点分析了面向类脑智能、人工智能、深空探测、网络安全、高效能量转化等尖端科技领域中前沿新材料产业的基础能力现状与问题。面向2025年、 2035年的阶段性发展规划,从提升前沿新材料产业科技创新基础能力、支撑保障基础能力、竞争基础能力、可持续发展基础能力、基础设施建设水平以及改善产业生态环境等方面提出了我国前沿新材料产业基础能力的发展目标与发展战略。为满足新一轮科技革命和产业变革对前沿新材料的需求,从材料基因工程提升前沿新材料产业基础能力、双循环新发展格局下前沿新材料产业布局、碳达峰与碳中和发展战略下的前沿新材料产业布局,自主可控的前沿新材料测试表征能力建设等方面提出了发展建议。

关键词: 前沿新材料,产业基础能力,尖端科技,材料基因工程,双循环,碳达峰与碳中和    

A review on ductile mode cutting of brittle materials

Elijah Kwabena ANTWI, Kui LIU, Hao WANG

《机械工程前沿(英文)》 2018年 第13卷 第2期   页码 251-263 doi: 10.1007/s11465-018-0504-z

摘要:

Brittle materials have been widely employed for industrial applications due to their excellent mecha-nical, optical, physical and chemical properties. But obtaining smooth and damage-free surface on brittle materials by traditional machining methods like grinding, lapping and polishing is very costly and extremely time consuming. Ductile mode cutting is a very promising way to achieve high quality and crack-free surfaces of brittle materials. Thus the study of ductile mode cutting of brittle materials has been attracting more and more efforts. This paper provides an overview of ductile mode cutting of brittle materials including ductile nature and plasticity of brittle materials, cutting mechanism, cutting characteristics, molecular dynamic simulation, critical undeformed chip thickness, brittle-ductile transition, subsurface damage, as well as a detailed discussion of ductile mode cutting enhancement. It is believed that ductile mode cutting of brittle materials could be achieved when both crack-free and no subsurface damage are obtained simultaneously.

关键词: ductile mode cutting     brittle materials     critical undeformed chip thickness     brittle-ductile transition     subsurface damage     molecular dynamic simulation    

Cutting performance of surgical electrodes by constructing bionic microstriped structures

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0728-9

摘要: Surgical electrodes rely on thermal effect of high-frequency current and are a widely used medical tool for cutting and coagulating biological tissue. However, tissue adhesion on the electrode surface and thermal injury to adjacent tissue are serious problems in surgery that can affect cutting performance. A bionic microstriped structure mimicking a banana leaf was constructed on the electrode via nanosecond laser surface texturing, followed by silanization treatment, to enhance lyophobicity. The effect of initial, simple grid-textured, and bionic electrodes with different wettabilities on tissue adhesion and thermal injury were investigated using horizontal and vertical cutting modes. Results showed that the bionic electrode with high lyophobicity can effectively reduce tissue adhesion mass and thermal injury depth/area compared with the initial electrode. The formation mechanism of adhered tissue was discussed in terms of morphological features, and the potential mechanism for antiadhesion and heat dissipation of the bionic electrode was revealed. Furthermore, we evaluated the influence of groove depth on tissue adhesion and thermal injury and then verified the antiadhesion stability of the bionic electrode. This study demonstrates a promising approach for improving the cutting performance of surgical electrodes.

关键词: surgical electrodes     tissue adhesion     thermal injury     bionic structures     cutting performance     medical tools    

Real-time task processing method based on edge computing for spinning CPS

Shiyong YIN, Jinsong BAO, Jie LI, Jie ZHANG

《机械工程前沿(英文)》 2019年 第14卷 第3期   页码 320-331 doi: 10.1007/s11465-019-0542-1

摘要: Spinning production is a typical continuous manufacturing process characterized by high speed and uncertain dynamics. Each manufacturing unit in spinning production produces various real-time tasks, which may affect production efficiency and yarn quality if not processed in time. This paper presents an edge computing-based method that is different from traditional centralized cloud computation because its decentralization characteristics meet the high-speed and high-response requirements of yarn production. Edge computing nodes, real-time tasks, and edge computing resources are defined. A system model is established, and a real-time task processing method is proposed for the edge computing scenario. Experimental results indicate that the proposed real-time task processing method based on edge computing can effectively solve the delay problem of real-time task processing in spinning cyber-physical systems, save bandwidth, and enhance the security of task transmission.

关键词: edge computing     real-time task     scheduling     CPS     spinning    

边缘计算技术发展与对策研究

洪学海,汪洋

《中国工程科学》 2018年 第20卷 第2期   页码 20-26 doi: 10.15302/J-SSCAE-2018.02.004

摘要:

边缘计算是一项正在兴起的技术,通过把计算、存储、带宽、应用等资源放在网络的边缘侧,以便减小传输延迟和带宽消耗。同时,应用开发者和内容提供商可以根据实时的网络信息提供可感知的服务。移动终端、物联网等设备为计算敏感型的应用提供了必要的前端处理支撑,例如图像识别、网络游戏等应用,以利用边缘计算的处理能力分担云端工作负荷。本文介绍了边缘计算的概念、需解决的关键问题、主要研究进展,边缘计算发展带来的影响以及边缘计算带来的机遇和发展对策。

关键词: 云计算     边缘计算     雾计算     移动边缘计算     物联网     前端智能    

Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics:

Aswathy Vasudevan, Vasyl Shvalya, Aleksander Zidanšek, Uroš Cvelbar

《化学科学与工程前沿(英文)》 2019年 第13卷 第3期   页码 427-443 doi: 10.1007/s11705-019-1805-4

摘要: Since graphene has been discovered, two-dimensional nanomaterials have attracted attention due to their promising tunable electronic properties. The possibility of tailoring electrical conductivity at the atomic level allows creating new prospective 2D structures for energy harvesting and sensing-related applications. In this respect, one of the most successful way to manipulate the physical properties of the aforementioned materials is related to the surface modification techniques employing plasma. Moreover, plasma-gaseous chemical treatment can provide a controlled change in the bandgap, increase sensitivity and significantly improve the structural stability of material to the environment as well. This review deals with recent advances in the modification of 2D carbon nanostructures for novel ‘edge’ electronics using plasma technology and processes.

关键词: graphene     edge electronics     2D nanomaterials     plasma     electrical conductivity    

标题 作者 时间 类型 操作

Edge preparation methods for cutting tools: a review

期刊论文

Modeling of the minimum cutting thickness in micro cutting with consideration of the friction aroundthe cutting zone

Tianfeng ZHOU, Ying WANG, Benshuai RUAN, Zhiqiang LIANG, Xibin WANG

期刊论文

Russian school of the theory and geometry of gearing: Its origin and golden period (1935 --1975)

Dmitry BABICHEV,Sergey LAGUTIN,Natalya BARMINA

期刊论文

A new proof of Honeycomb Conjecture by fractal geometry methods

Tong ZHANG, Kai DING

期刊论文

Crystallographic orientation effect on cutting-based single atomic layer removal

Wenkun XIE, Fengzhou FANG

期刊论文

Structural design of morphing trailing edge actuated by SMA

Qi WANG, Zhiwei XU, Qian ZHU

期刊论文

Transmission probability method based on triangle meshes for solving the unstructured geometry neutron

WU Hongchun, LIU Pingping, ZHOU Yongqiang, CAO Liangzhi

期刊论文

Frequencies of circular plate with concentric ring and elastic edge support

null

期刊论文

Knife-edge technique for laser cooling

WANG Zhanshan, MA Shanshan, MA Yan, ZHAO Min, LIU Hengbiao

期刊论文

提升前沿新材料产业基础能力战略研究

刘雪峰,刘昌胜,谢建新

期刊论文

A review on ductile mode cutting of brittle materials

Elijah Kwabena ANTWI, Kui LIU, Hao WANG

期刊论文

Cutting performance of surgical electrodes by constructing bionic microstriped structures

期刊论文

Real-time task processing method based on edge computing for spinning CPS

Shiyong YIN, Jinsong BAO, Jie LI, Jie ZHANG

期刊论文

边缘计算技术发展与对策研究

洪学海,汪洋

期刊论文

Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics:

Aswathy Vasudevan, Vasyl Shvalya, Aleksander Zidanšek, Uroš Cvelbar

期刊论文